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Abstract
We discuss the role of electron–electron and electron–phonon correlations in current flow in the
Coulomb blockade regime, focusing specifically on non-trivial signatures arising from the
breakdown of mean-field theory. By solving transport equations directly in Fock space, we
show that electron–electron interactions manifest as gateable excitations experimentally
observed in the current–voltage characteristic. While these excitations might merge into an
incoherent sum that allows occasional simplifications, a clear separation of excitations into slow
‘traps’ and fast ‘channels’ can lead to further novelties such as negative differential resistance,
hysteresis and random telegraph signals. Analogous novelties for electron–phonon correlation
include the breakdown of commonly anticipated Stokes–anti-Stokes intensities, and an
anomalous decrease in phonon population upon heating due to reabsorption of emitted phonons.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The experimental study of electron flow through nanostruc-
tures has been a dynamic field of activity, with an eye on
extending and complementing present day transistor tech-
nologies, as well as generating entirely new applications.
Nanoscale electronic transport spans a broad range of nat-
ural and artificially fabricated nanostructures, from carbon
nanotubes, graphene nanoribbons and silicon nanowires [1]
to spintronics and organic molecular electronics [2, 3]. In
particular, there has been enormous interest in quantum dot
structures for exploring novel transport phenomena and de-
vice applications beyond the transistor switching paradigm,
such as the exploration of double quantum dot structures [4]
for spin-based qubit manipulation and detection [5]. Elec-
tron transport through natural and artificial molecules forms
a key research topic, especially for switching, sensing [6] and
quantum-computation-based applications [7].

In typical transport simulations, for instance in the widely
implemented non-equilibrium Green’s function (NEGF)
formalism, it is common to include the effect of electron–
electron or electron–vibronic interactions approximately
through an effective one-electron potential or self-consistent
field (SCF) that needs to be computed self-consistently. There

are many exceptions, however, where such an approximation
may break down, especially when interaction energies
dominate other energy scales of interest such as the level
broadening and the device temperature. One such regime, well
known as Coulomb blockade (CB) [8], occurs when the device
or channel capacitance is low enough that an active electron
inside the channel can prevent a subsequent one from entering.
Such a single-particle quantization of charge transfer is
frequently observed in chemical reactions [9], but is a relative
newcomer in electronic transport measurements [8]. The
sequential addition of electrons in integer amounts disallows
mean-field treatments which tend to smear out charges and
interactions by treating all electrons on an equal footing. In
contrast, solutions involve products of electronic occupancy
and atomic displacement operators including an exclusion
principle term that requires keeping track of every possible
electronic or vibrational configuration through the employment
of the many-particle Hilbert (Fock) space. Under these
strong correlation conditions, energy levels must be calculated
not through a simple band theory or an effective potential,
but as differences between total energies of the neutral and
the cationic/anionic/vibronically excited species. This is
extremely difficult since it requires enumeration of all many-
particle configurations (2N of them, for N basis sets involving

0953-8984/08/374109+13$30.00 © 2008 IOP Publishing Ltd Printed in the UK1

http://dx.doi.org/10.1088/0953-8984/20/37/374109
http://stacks.iop.org/JPhysCM/20/374109


J. Phys.: Condens. Matter 20 (2008) 374109 B Muralidharan et al

electronic and phononic coordinates!). However, such a
complexity is necessary, as exclusion in Fock space creates
a rich spectrum of excitations as well as universal scaling
rules for the current plateau heights that are hard to capture
a priori using a modified one-electron potential3. The alternate
Fock space viewpoint (in general, a many-body density matrix
theory) has been somewhat restricted for describing quantum
dot transport [8, 10] and has been relatively unexploited in
molecular electronics. The focus of this paper is on illustrating
the Fock space viewpoint of transport, and its experimental
ramifications as far as observable signatures of many-particle
excitations go.

Our recent work in the area of molecular trans-
port [11, 12, 14, 13], as well as compelling recent experiments
triggered towards spin-based quantum computation [5, 15–18],
both argue for increased activity in this area. This paper
focuses on the role of both electron–electron and electron–
phonon correlations in non-equilibrium transport. The paper
is organized into three broad sections. In the first section
we introduce the Fock space viewpoint. The second section
runs through the formalism of Fock space transport. Section 3
discusses Coulomb blockade signatures created by electron–
electron interactions. We elaborate on the non-trivial role of
electronic excitations [12] in the interpretation of frequently
observed I –V characteristics [20, 21]. It is further shown that
electronic excitations can also result in intrinsic asymmetries
within the channel that can provide an elegant approach to
understanding negative differential resistance (NDR), hystere-
sis effects [14], and random telegraph noise [23]. The fourth
section discusses the additional subtleties imposed by strong
electron–phonon interactions. We show that the inclusion of
Fock space excitations within the electron–phonon manifold
not only explains anomalous scaling of phonon conductance
side bands [25, 24], but also predicts an anomalous tempera-
ture distribution of the phonon population.

2. Theoretical background

The Fock space approach to Coulomb blockaded transport was
proposed originally by Beenakker [10] in order to explain
the CB conductance peak spacings and heights observed
in semiconducting quantum dots. Figure 1 explains the
difference between the one-particle and many-particle Fock
space pictures. A set of N single-particle energy levels
generates 2N Fock states corresponding to emptying or
filling each of these levels with one electron. In the one-
electron picture, transport involves the addition and removal of
electrons between a set of channel levels and two macroscopic
electrodes (figure 1(a)). The levels themselves are computed
by solving the one-electron Schrödinger equation, including
electronic interactions approximately through a mean-field
potential that modifies these levels dynamically. In the
Fock space approach, however, the addition and removal of

3 In principle, a non-local time dependent density functional theory (TDDFT)
could capture these excitations even using an N × N one-electron potential
matrix, provided the time dependence of the functional is rich enough to
capture the additional excitations of the 2N × 2N space through its poles. In
practice, however, this has not been done, even for the simplest system of two
spin-degenerate levels.

NN ×

Rμ
Lμ

(a) (b)

(c) (d)

NN 22 ×

nN =

1+= nN

2trε1trε }{ iP

Rμ
Lμ

ωh

Phonon
bath

1ph phN n= − ph phN n= 1ph phN n= +

el elN n=

1el elN n= +

Figure 1. Introducing Fock space transport. (a) A schematic of
electronic transport in the one-particle picture. The channel is
coupled to two electrodes which add and remove electrons to and
from the channel, resulting in current flow. Given a set of N basis
functions the transport problem computationally scales as N × N .
(b) In the Fock space picture such addition and removal processes
can be understood in terms of transitions between states that differ by
a single electron number. In such a scheme one needs to keep track
of all possible configurations in the channel, thus obtaining an
exponential 2N × 2N scaling of the transport problem. (c) In the case
of strong electron–phonon interactions, the phonon system is coupled
to a phonon bath which is maintained at equilibrium. (d) The
inclusion of phonons calls for using copies of the electronic Fock
space, each corresponding to a phonon number. Electronic transport
results in vertical transitions while phonon coupling results in
horizontal ones.

electrons leads to a transition between two entirely different
multielectron configurations, in this case, configurations that
differ by a single electron (figure 1(b)). In other words,
electronic transport processes show up as vertical transitions
between total energies of electronic Fock states differing by
a single electron. The situation changes a bit when transport
involves the emission or absorption of phonons. In the one-
particle picture, an electron jumps between two one-electron
levels differing by the phonon energy (figure 1(c)), the phonon
system itself driven towards equilibrium through a separate
coupling to a thermal bath. In the Fock space approach
figure 1(d), phonon-assisted transport shows up as horizontal
transitions between multiple copies of the electronic Fock
space that each correspond to a different phonon number.

In the following, we will progressively build complexity
into our Fock space approach and attempt to identify the
experimental ramifications of doing so.

2.1. Single-level system, SCF analysis

Let us start with the smallest interacting system, namely, a
real or artificial molecule with a single energy level capable
of accommodating two spins (figure 2(a)). The onsite energy
of the level is ε0 and the Coulomb charging energy U . The
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Figure 2. Fock space transport through a singly degenerate energy
level. (a) The singly degenerate energy level can carry two electrons,
one of each type. (b) The Fock space thus comprises four states.
Transitions between these result in (c) two transport channels ε and
ε + U . Successive accessing of these transport channels results in
two current jumps at different bias points separated by a plateau.
A NEGF-SCF calculation is shown dotted for comparison.

level is coupled to contacts which are held separately at thermal
equilibrium at their respective bias-separated electrochemical
potentials μL,R (L: left, R: right). A starting point for our
analysis is the Hubbard Hamiltonian for the molecule

Ĥ = εn̂ + Un̂↑n̂↓ (1)

where the operators n̂↑,↓ have eigenvalues 0 and 1, while
n̂ = n̂↑ + n̂↓. Exactly diagonalizing this Hamiltonian
leads to a Fock space consisting of four many-electron states
(figure 2(b)), an empty zero-electron state |00〉 with energy
0, two one-electron states |01〉 and |10〉 corresponding to an
up or a down spin with energy ε, and a doubly occupied
up–down spin electron state |11〉 with energy 2ε0 + U .
Equilibrium occupancies of these many-electron states are
given by the Boltzmann distribution PN = e−(EN −μN)/kB T /�,
where kBT is the thermal energy, μ = EF is the equilibrium
contact Fermi energy or electrochemical potential, and � =∑

N e−(EN −μN)/kB T is the grand partition function. The average
electron occupancy is then given by 〈N〉 = ∑

N N PN .
One can bypass the many-electron Fock space treatment

by employing a suitable self-consistent (SCF) potential
acting in the one-electron subspace, modifying the energies
accordingly. In the spin restricted approach that treats the two
spins equally,

URSCF = 〈∂ Ĥ/∂ N 〉. (2)

where 〈. . .〉 denotes a quantum mechanical average. The
interacting term can be written as

Hint = Un̂↑n̂↓
= (U/2)

∑

σ

n̂σ n̂σ̄

= (U/2)
∑

σ

n̂σ (N − n̂σ )

= (U/2)N
∑

σ

n̂σ − (U/2)
∑

σ

n̂2
σ

= U N(N − 1)/2, (3)

where we have used the fact that N = ∑
σ n̂σ , and n̂2

σ = n̂σ ,
since n̂ can only take values of zero or one. The spin restricted
SCF potential is then given by

URSCF = 〈∂ Hint/∂ N〉 = U(〈N〉 − 1/2). (4)

For a given electrochemical potential, one guesses the value
of the average occupancy 〈N〉, uses it to calculate the SCF
potential, and then calculates in turn the mean-field occupancy
〈N〉 of the level ε̃ = ε + USCF using the Fermi–Dirac
distribution f (ε̃) = 1/[1+e(ε̃−μ)/kB T ], proceeding along these
lines until self-consistent convergence is achieved.

It is easy to see that the equilibrium occupancy N [12]
with respect to the chemical potential μ (we drop the
angular term indicating average here) should qualitatively
differ between the SCF and many-body results. In the former,
the electron occupancy is a fractional amount, adiabatically
changing from zero to two. In the many-body result, however,
one does not simply multiply the results for one electron by
two, but the electron occupancy changes abruptly between
zero to one, followed by a plateau of width U over which
the electrons are blockaded by the Coulomb interaction, after
which the electron number reaches two abruptly.

One could capture this blockaded effect using an
unrestricted self-consistent potential (USCF) by dictating that
the up and down spins do not feel potentials due to themselves.
By eliminating this self-interaction, the unrestricted potential
for a particular spin is then given by

UUSCF = 〈∂ Hint/∂ n̂σ 〉
= Unσ̄

= U(N − nσ ) (5)

with n = 〈n̂〉 and σ̄ represents the spin opposite to σ . This spin
dependent unrestricted potential eliminates the self-interaction
of the level to which charge is being added. A self-consistent
solution of the occupancy yields an N–μ [12] plot very similar
to the exact result, showing that an unrestricted calculation can
capture equilibrium Coulomb blockade effects.

2.2. Single-level system, Fock space transport

Non-equilibrium turns out to be hard to mimic with any SCF
theory, even with considerable latitude in our choice of the SCF
potential. Let us assume that the contact injection rates are
given by γ1,2/h̄, ignoring level broadening for the moment.
Here 1, 2 also refers to the left (L) and right (R) contact.
Both conventions are used in this paper to be consistent with
NEGF literature. One can write down a master equation for
a transition between the many-electron levels driven by the
contacts

Ṗi = −
∑

j

Ri j Pi +
∑

j

R ji Pj (6)
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where i, j represent the many-body states. The master
equation, intuitively quite transparent from figure 2(b), can
be formally derived by decoupling the contact and molecular
density matrix equations in the steady state limit and then
invoking a Markov approximation that ignores memory effects
such as energy dependences in the contact broadening. For
our simple example of the dot with two spin levels, the
rates of transition between the four Fock states, numbered as
{|00〉, |01〉, |10〉, |11〉}, are given by

R00→01 = R00→10 = (γ1 f1 + γ2 f2)/h̄

R01→00 = R10→00 = (γ1 f̄1 + γ2 f̄2)/h̄

R01→11 = R10→11 = (γ1 f ′
1 + γ2 f ′

2)/h̄

R11→01 = R11→10 = (γ1 f̄ ′
1 + γ2 f̄ ′

2)/h̄

(7)

where f1,2 = 1/[1 + e(ε0−μ1,2)/kB T ], f̄1,2 = 1 − f1,2, f ′
1,2 =

1/[1+e(ε0+U−μ1,2)/kB T ], and f̄ ′
1,2 = 1− f ′

1,2. In short, electron
addition processes are governed by probability of occupancy
f at the corresponding transition energies ε or ε + U by
each contact electrochemical potential, while electron removal
processes are governed by the probability of vacancy 1 − f .
Thus the two current onset points occur at the bias situations
shown schematically in figure 2(c).

At steady state, it is straightforward to solve these
equations (only three of which are independent), along with
the normalization

∑
i Pi = 1. The probabilities are then used

to calculate the current injected by one contact (say the left one,
‘L’) as

I L =
∑

i

(±e/h̄)

[

−
∑

j

RL
i j Pi +

∑

j

RL
j i Pj

]

(8)

where the rates RL are obtained by only considering the
individual left contact contributions to the corresponding rate,
for example, RL

00→10 = γ1 f1/h̄. The ± signs correspond to
addition/removal of electrons by the left contact. The resulting
I –V characteristic is shown in figure 2(d).

In an SCF treatment, the current, shown dotted in
figure 2(d), is obtained by solving the rate equations in the
one-electron subspace. The electron occupancy is given by
N = (γ1 f1 + γ2 f2)/(γ1 + γ2), where the Fermi functions are
evaluated at the energy ε̃ = ε + USCF. The SCF potential in
turn depends on N as described earlier, so the calculation is
done self-consistently. The converged energy is then used to
calculate the current as I = (2e/h̄)γ1γ2/(γ1 + γ2)[ f1 − f2].

The RSCF model that treats spins equally tends to give
an adiabatically increasing current that reaches its maximum
contact-dominated value 2e/h̄ × γ1γ2/(γ1 + γ2) when the
contact electrochemical potential fully crosses the level. It
is important to note that charging alone can smear out this
current, leading to a low conductance value spread out over
a wide voltage range comparable to U . The RSCF potential
U(N − 1/2) causes a continuous shift in levels with charge
addition, which is accomplished in fractions. The unrestricted
approach USCF gives an intervening Coulomb blockade
plateau of width U that separates the first spin addition (or
removal) event from the second. The intervening ‘open-shell’

plateau is at half the maximum value for complete level filling,
which is understandable because the two spins are treated on
an equal footing chemically, and therefore carry equal current.

Compared with the SCF results above, the exact solution
of the many-body rate equations reveals an interesting surprise
that is actually quite illuminating. Of all many-electron
configurations, the one-electron states (and only those) are
doubly degenerate, giving us a normalization condition that
differs from a simpler version that ignores spins and simply
multiplies all results by two. As a consequence of this sum rule,
which takes Pauli exclusion into account (preventing double
up or down spin states, for example), the exact value of the
open-shell current plateau depends on the Fermi functions as
γ1γ2/[γ1(1+ f1)+γ2(1+ f2)] in the large charging (U → ∞)
limit. For sharp levels at positive bias ( f1 = 1, f2 = 0), this
reaches γ1γ2/[2γ1 + γ2]. For the strongly non-equilibrium
situation corresponding to equal resistive couplings (γ1 =
γ2), the Coulomb plateau carries two-thirds of the maximum
closed-shell current, in contrast with the USCF result that gives
a factor of half. This implies an interesting history dependence,
in that the first spin added to the empty level carries more
current than the second! If we keep track of the entire many-
electron configuration space, it is easy to see that this counter-
intuitive result arises because there are two ways of adding the
first spin and only one way of adding the second (the other
channel eliminated by exclusion). This subtlety is completely
washed away when we choose to work in a reduced N × N
(or 2N × 2N for unrestricted) subspace instead of the full
22N × 22N configuration space.

The SCF potential 〈∂ H/∂n〉 was calculated by writing the
electron operators n̂ = 〈n̂〉 + δn̂, expanding the Coulomb term
Un̂↑n̂↓ and dropping the correlation terms δn̂↑δn̂↓ completely,
i.e., the Hartree–Fock approximation. One could include parts
of the correlation term phenomenologically, by dictating that
n̂i n̂ j ≈ (1 − gi j)〈ni 〉〈n j 〉, with gi j representing the exchange–
correlation hole. This is in the spirit of Kohn–Sham theory,
where the potential is calculated by various approximate
means. However, the effect of g is simply to renormalize
the charging energy U that it adjoins, influencing at best
the width, but not the height of the current plateaus. Thus,
even for the simplest quantum dot, unrestricted potentials in
the one-electron subspace cannot capture the non-equilibrium
properties correctly.

It is further illuminating when a comparison between the
USCF and exact model is performed. Recall that in the
USCF approach, we introduce the aspect of ‘self-interaction
correction’ as described in equation (5). Here, the presence
of an electron of a particular spin adds a Coulomb cost to the
other, but not to itself. Figure 3(b) shows the discrepancy
between the USCF and the many-body transport calculations
for a dot with two spin levels, coupled equally to two contacts
(driving it far from equilibrium). As is clear from the results,
the discrepancy is in the onset voltages, widths and heights
of the various plateaus. While the plateau widths could be
adjusted to fit the exact results by renormalizing the charging
energies parametrically to account for correlation effects, the
heights are independent of these values, and depend only on
universal factors arising from Pauli exclusion, and cannot be
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Figure 3. Comparison between USCF and exact transport results for
(a) extreme non-equilibrium (γ1 = γ2), (b) in which the I–V s show
significant discrepancy between USCF (dotted red) and exact (bold
black) results. (c) The case of strong asymmetry implies a near
equilibrium with the first contact (γ1 = 100γ2). (d) The discrepancies
in plateau onset, width and height are resolved in this equilibrium
limit, but are hard to resolve once we go far from equilibrium.

fixed in such a straightforward way, or by the usual DFT
approach of progressively improving on correlations in the
electronic structure. The issue is further underscored by the
fact that in the strongly asymmetric limit (γ1 = 100γ2),
where the system is essentially driven into equilibrium with
the left contact, the agreement between USCF and many-
body results is substantially improved. It is worth clarifying
at this time though that in the multilevel generalization,
this correspondence becomes a lot harder to establish even
near equilibrium, since even the number of current plateaus
generated by a 2N × 2N Fock space approach differs
substantially from its 2N × 2N USCF counterpart (unless
the broadening functions bear enough poles through their
energy dependences to precisely account for those missing
conductance peaks).

The situation gets simpler if we have asymmetric contacts
γ1 
 γ2, so that the system approaches equilibrium with the
left contact. As figure 3(d) shows, the USCF agrees with the
many-body limit in this asymmetric coupling case, as both
approaches are dealing with a near-equilibrium problem. For
positive bias on the weaker contact, the stronger contact keeps
the level filled (which it can do in two ways, adding an up or a
down spin, assuming the level was empty to begin with). For
opposite bias, the stronger contact empties this level, which can
now be done in only one way (up OR down depending on what
occupied the level). The competition between ‘shell tunneling’
and ‘shell filling’ makes the I –V strongly asymmetric, with
the first plateau half the second for positive bias on the weaker
contact, and merging with the second for opposite bias. This

ratio of one to two, observed experimentally [26], arises in
a straightforward way from our analyses since the ratio of
the first and second plateau currents is given for positive bias
by (γ1 + γ2)/(2γ1 + γ2) ≈ 1/2 for γ1 
 γ2, and by
(γ1 + γ2)/(γ1 + 2γ2) ≈ 1 for negative bias. The asymmetry
arises from the difference in the number of spin addition and
removal channels for positive and negative bias, and leads to
an asymmetry in the current levels.

We will next show how this model is extended for a larger
molecule, and how additional physics due to correlations and
excitations start to arise.

2.3. General approach for multilevel systems

In the case of a larger molecule, one begins with the model
Hamiltonian in second-quantized notation:

Ĥ =
∑

α

εα n̂α +
∑

α �=β

tαβc†
αcβ

+
∑

α,σ

Uαα n̂ασ n̂ασ̄ + 1
2

∑

α �=β

Uαβ n̂α n̂β, (9)

where n̂α = c†
αcα , α, β correspond to the orbital indices of the

orbitals for various sites on the molecule, and σ , σ̄ represent
a particular spin and its reverse. Exactly diagonalizing
this Hamiltonian yields a large spectrum of closely spaced
excitations in every charged molecular configuration. Using
the equation of motion of the density matrix of the
composite molecule and leads and assuming no molecule–lead
correlations, one can derive [28, 27] a simple master equation
for the density matrix of the system. Ignoring off-diagonal
coherences, we are left with a master equation [27] in terms
of the occupation probabilities P N

i of each N-electron many-
body state |N, i〉 with total energy E N

i . The master equation
then involves rates of transition R(N,i)→(N±1, j) between states
differing by a single electron, leading to a set of independent
equations defined by the size of the Fock space [10]

dP N
i

dt
= −

∑

N, j

[
R(N,i)→(N±1, j) P N

i − R(N±1, j)→(N,i) P N±1
j

]

(10)
along with the normalization equation

∑
i,N P N

i = 1. For
weakly coupled dispersionless contacts, parameterized using
bare-electron tunneling rates γα , (α: left/right contact), we
define rate constants


Nr
i jα = γα|〈N, i |c†

α |N − 1, j〉|2


Na
i jα = γα|〈N, i |cα |N + 1, j〉|2,

(11)

where c†
α, cα are the creation/annihilation operators for an

electron on the molecular end atom coupled with the
corresponding electrode. The transition rates are given by

R(N,i)→(N−1, j) =
∑

α=L,R


Nr
i jα

[
1 − f (εNr

i j − μα)
]

R(N−1, j)→(N,i) =
∑

α=L,R


Nr
i jα f (εNr

i j − μα)
(12)

for the removal levels (N, i → N − 1, j), and replacing
using (r → a, f → 1 − f ) for the addition levels (N, i →

5
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N + 1, j). μα are the contact electrochemical potentials,
f is the corresponding Fermi function, with single-particle
removal and addition transport channels εNr

i j = E N
i − E N−1

j ,

and εNa
i j = E N+1

j − E N
i . Finally, the steady state solution to

equation (10) is used to get the left terminal current

I = ± e

h̄

∑

N,i, j

[
RL

(N,i)→(N±1, j) P N
i − RL

(N±1, j)→(N,i) P N±1
j

]

(13)
where states corresponding to a removal of electrons by the
left electrode involve a negative sign. We will assume a break-
junction configuration with equal electrostatic coupling with
the leads, μL,R = EF ∓ eVd/2.

While the above equations include spectral details from
the multiple excitations, a considerable simplification arises
if we can incoherently sum over many of these excitations,
leading to the ‘orthodox model’, where

I = ± e

h̄

∑

N

[
RL

N→N±1 − RL
N→N∓1

]
P N . (14)

The transition energies can be obtained in terms of a simple
RC circuit, while the transition rates also compactify once
we integrate them over the relevant energies, taking exclusion
factors into account.

The implementation of the above sets of equations now
sets the stage for further discussions.

3. Coulomb blockade: the case of electronic
transport channels

In this section we describe how the excitation spectra of
molecules may be probed using Coulomb blockade transport.
While typical molecular I –V s look relatively featureless, what
is not often appreciated is that in the Coulomb blockade
limit (realized by engineering weak contacts or non-conductive
backbones), electronic excitations do give rise to prominent
features in the I –V [20, 21]. We will also show how such
an excitation spectra can generate intrinsic I –V asymmetries,
which in turn can manifest as NDR effects.

Exact diagonalization of the molecular Hamiltonian
equation (9) generates a body of excitation spectra for every
charged configuration. Our typical starting point is the
equilibrium molecular quantum dot configuration in its ground
state. Addition or removal of an electron takes the system to a
new ground state corresponding to the singly charged cation
or anion, marking the onset of conduction. In addition to
the ground state however, each charged species bears a quasi-
continuous excitation spectrum separated from its ground state
energy by a gap that is determined by the energetics of the
molecular system. Once the first excitation is accessed, the
quasi-continuous excitation spectrum can be easily probed, as
shown in figures 4(a)–(c). It is worth emphasizing that the
excitations are energetically quite close as they differ in the
rearrangement (but not in the number) of charges. At high
bias with small broadening and in the absence of phonons, the
purely electronic excitations do not have adequate time to relax
to the ground state, accounting for their visibility in the current
spectrum.

2trε

1trε nN =

1+=nN

}{ trkε

Lμ

Rμ
}{ trkε

(a) (b)

(c) (d)

Figure 4. Electronic excitations in molecular conduction.
(a) Schematic shows three Fock states: the N = n equilibrium
ground state configuration and two states in the addition N = n + 1
spectrum. (b) Each charge configuration consists of a ground state
and a set of closely spaced excitations. The accessing of such closely
spaced excitations between the neutral and charged species gives rise
to numerous (c) transport channels εtrk [11]. The accessing of such
transport channels gives rise to a (d) quasi-ohmic behavior in the
I–V characteristics that are commonly noted in various
experiments [19, 22].

The simplest and most prominent impact of Coulomb
blockade on the I –V s of short molecular wires is a
clear suppression of zero-bias conductance, often seen
experimentally [2, 29]. However, integer charge transfer
can also occur between various electronic excitations of the
neutral and singly charged species at marginal correlation
costs [30, 32]. The above fact leads to fine structure in the
plateau regions [20, 19, 22, 33], specifically, a quasi-linear
regime resulting from very closely spaced transport channels
(εN

i j ) via excitations. The crucial step is the accessing of the
first excited state via channel εNr

10 , following which transport
channels involving higher excitations are accessible in a very
small bias window.

The sequence of accessing of transport channels upon
bias enumerated in the state transition diagrams shown in
figures 4(a)–(c) determines the shape of the I –V characteristic.
When the Fermi energy EF lies closer to the threshold transport
channel εNr

00 corresponding to charge transfer between two
ground states, it takes an additional positive drain bias for the
source to access the first excited state of the neutral system
via the transition εNr

10 . Under this condition, the I –V shows a
sharp rise followed by a plateau (figure 4(d), shown in blue
online), as seen in various experiments [31]. However, when
transport channels that involve low lying excitations such as
εNr

10 are closer to the Fermi energy EF than εNr
00 , the excitations

get populated by the left contact immediately when the right
contact intersects the threshold channel εNr

00 , allowing for a
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Figure 5. Current asymmetry from extrinsic ‘contact’ asymmetry.
(a) In the case when the left electrode is more strongly coupled to the
channel than the right one γL 
 γR, currents are limited by removal
(addition) rates under forward (reverse) bias conditions. (b) The
number of removal channels can be significantly different from the
number of (c) addition channels. This gives rise to the asymmetry
between (d) forward and reverse bias situations. Furthermore the
application of gate potential modulates the number of transport
channels available at threshold. This feature results from the Fock
space excitation spectra, causing not only a change in threshold
voltage with applied gate bias, but also a discernible threshold
current modulation as noted here, and in various experiments [20].

simultaneous population of both the ground and first excited
states via εNr

00 and εNr
10 at threshold. Under these conditions the

I –V shows a sharp onset followed immediately by a quasi-
linear regime (figure 4(d) shown in black) with no intervening
plateaus, as observed frequently in I –V s of molecules weakly
coupled with a backbone [19, 22, 20].

3.1. Extrinsic asymmetries—the case of rectification

The direct role of excitations in conduction becomes
particularly striking under asymmetric coupling (γL 
 γR)
with contacts [20, 34]. Due to this extrinsic asymmetry,
current magnitudes are dictated by the weaker contact.
This asymmetry directly affects the forward and reverse
bias characteristics, leading to current rectification. This
rectification is caused by the inherent asymmetry between
addition and removal processes, each of which is rate limiting
depending on the bias direction, as shown in figures 5(a)–(c).

In contrast to the SCF regime where unequal charging
drags out a same level current over different voltage
widths [35], in the CB regime we encounter clear intermediate
current steps from open shells, with current heights that
are themselves asymmetric at threshold (figure 5(d)). This
asymmetry arises due to the difference in number of pathways
for removing or adding a spin, taking in particular into account
the possible excitation channels between the neutral and singly

charged species (figures 5(b) and (c)). The number of such
accessible excitations at threshold can be altered with an
external gate bias, leading to a prominent gate modulation of
the threshold current heights, over and above the modulation of
the onset voltages and the conductance gap [20] (figure 5(d)).
Furthermore, it is easy to show that the asymmetry will flip
between gate voltages on either side of the charge degeneracy
point, as is also observed experimentally [34].

It is worth emphasizing that the sophistication arose
specifically due to the presence of separate identifiable
contributions from the open shells, which are normally
overwhelmed by broadening if we are away from the CB limit.
However, the specific identification of these excitations is not
crucial to the qualitative shape of the I –V s, as long as one is
not looking too closely at the individual spectral features. A
simpler orthodox model would then suffice to reproduce these
broad features described above, such as the transition between
steps and slopes in the I –V s, the flipping of asymmetry and
the gate modulation of the current levels [13]. However,
there are notable exceptions, such as for intrinsic asymmetries,
where a clear separation needs to be made between certain
classes of excitations with longer lifetimes (‘traps’) and the
regular excitations with shorter lifetimes (‘channels’) that are
responsible for the current flow.

3.2. Intrinsic asymmetries—NDR, hysteresis and
telegraph noise

The physics of NDR can be explained readily using an USCF
model that is actually quite intuitive. Consider a channel and a
trap, the channel being strongly coupled to the contacts and
the trap weakly coupled. Accessing the channel creates a
resonant onset of current. Accessing the trap subsequently
would keep the conduction unaffected, as the trap is non-
conducting; however, once we throw in the strong Coulomb
repulsion arising from charging up the trap, it is easy to
see that this repulsion can expel the conducting channel out
of the conducting bias window, leading to an NDR. Self-
interaction correction is crucial to this picture, as the charging
should repel the channel level, but not the trap level itself.
Further sophistications can arise from considering the lifetime
of the trap. If the trap does not release its charge during the
measurement time, then a reverse scan would keep the channel
blocked and lead to a hysteresis. Such a hysteresis is scan
rate dependent, as the rate determines the degree to which the
trap releases its captive charge. The low current state can be
reversed by going to large negative bias to expel this charge
and restore initial conditions.

The realization of the NDR involves two conditions:
(a) that the charging of the trap is large enough to expel much
of the channel from the bias window, and (b) that the resulting
current carried by the trap plus the residual tail of the channel
sitting in the bias window exceeds the current carried originally
by the channel alone. The first amounts to the onset condition
for an NDR, while the second describes, in some sense, the
effectiveness of the NDR (in terms of an inequality). With
a little bit of effort, one can extract a range of parameters
that satisfy both these conditions. We will instead show that
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a

Figure 6. NDR effects from intrinsic asymmetry or ‘dark states’.
(a) A generic mechanism NDR can be cast in terms of three device
Fock space states, and transitions |A〉 ↔ |B〉 and |A〉 ↔ |C〉
between those that differ by a single electron. The dark state, |C〉 say,
has a very slow removal rate in comparison to its addition rate.
(b) Bias environments, (a) and (b), correspond to current rise
followed by a collapse. (c) A general criterion for such a current
collapse or NDR to occur with increasing voltage can be cast in
terms of the dark state removal rates. (d) NDR in the I–V
characteristic is contingent on the criteria derived here [14].

even in the Fock space picture (which treats the channel plus
trap as a composite system), one can identify these two same
conditions: the NDR starts when one encounters what we refer
to as a ‘dark’ or ‘blocked’ state, and subject to this condition,
the effectiveness of the NDR amounts to an inequality that we
will now discuss.

A condition for NDR can be derived much more generally
in terms of three Fock space states |A〉, |B〉, and |C〉 with
energies E A < EB < EC respectively (figure 6(a)),
representing three accessible states within the bias range of
interest. For instance, |A〉, |B〉 could be the ground states of
the N = n0 and N = n0 + 1 electron systems, and |C〉 the first
excited state of the N = n0 + 1-electron system. Transport of
electrons involves single-charge removal or addition between
states |B〉, |C〉 and |A〉 that differ by an electron, via addition
and removal rates RA↔B,C ∝ 1

τAB,C
. Such an electron exchange

is initiated when reservoir levels are in resonance with the
single-electron transport channels εB A = EB − E A and
εC A = EC − E A respectively. The I –V characteristic of this
three-state system, shown schematically in figure 6(b), shows
two plateaus with current magnitudes Ia and Ib respectively.
Current collapse or NDR occurs when Ia > Ib.

In the above system, NDR occurs when under specific
conditions, the state |C〉 can be a blocking or dark state,
for which electron addition is feasible while removal is rate
limiting. This can happen when there are intrinsic asymmetries
within the transport problem, as in the trap–channel dichotomy

Lμ
Rμ

Steady State

Steady State

Lμ
Rμ

Lμ
Rμ

R
CAt τ<

R
CAt τ>

Transient(a)

(c)

(b)

Figure 7. Hysteresis effects due to sweep rate. (a) Under steady state
conditions the dark state behaves as an effective blocker. (b) A sweep
rate faster than the rate determining timescale can put the transport
process in a transient state. (c) Under such transient conditions
sweep rate can induce disguised NDRs and often hysteresis, both
depending on sweep rate [36].

described earlier. Regardless of the specific origin of blocking,
a simple criterion for current collapse can be derived [14] in
terms of the rate limiting process, that is the rate of electron
removal from the dark state |C〉, RC↔A . A better intuition is
provided by thinking of rates as inverse lifetimes, as shown
in figure 6(c). If the lifetime of state |C〉, τC A , exceeds
the sum of the addition and removal rates of the conducting
state, it becomes an effective blocker. In other words, the
condition τR

C A > τL
AB + τR

B A determines whether NDR occurs
or not. The superscripts L and R represent the left or right
electrode, and under the forward bias situation add and remove
electrons respectively. The consequence of the above criterion
is summarized in figure 6(d), clearly indicating that NDR only
occurs when τR

C A > τL
AB + τR

B A. A similar criterion is valid
for the reverse bias direction on interchanging superscripts L
with R.

Further sophistications may arise due to ‘transient’
probing. The criterion obtained above applies for steady state,
where the dark state gets occupied with certainty, resulting
in an inevitable current blockade regime. Let us consider
such a blocked current state, shown dotted in figure 7(c). A
‘disguised’ NDR can also be achieved if the voltage sweep
rates are faster than the rate determining dark state lifetime.
Such a sweep rate simply means that the dark state has not yet
been occupied and thus a current determined by the addition
and removal times 1/(τL

AB + τR
B A) can still flow. This situation

is shown in figure 7(c), in which the onset of the dark state can
be delayed provided the sweep rate is fast enough. But once
the dark state forms, the current is blocked and thus remains
so. This implies that on the backward sweep current remains
blocked, resulting in a sweep rate dependent hysteresis. Such
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a behavior has been noted by Kiehl et al [36] in a molecular
system, which was attributed to a slow charge trapping process,
which again fits into the dark state picture. Just as noted here,
Kiehl et al also observe that the NDR effect diminishes with
decreasing sweep rate and ultimately vanishes at steady state,
implying the absence of a real hysteresis at steady state. This
kind of hysteresis is just an artifact of sweep rates being faster
than the rate determining processes.

It must be mentioned that certain hysteretic processes can
occur even at steady state due to the true bistable nature of the
system. A classic example is the charging induced hysteresis
in resonant tunneling diode (RTD) structures [37]. Other
interesting examples include bistability caused by hyperfine
interactions [39] causing a hysteresis with applied magnetic
field, and optical bistability created by superlattice dielectrics
that show strong terahertz non-linearity due to Bloch
oscillation and dynamic localization of electrons [40, 41].

While we discussed the interesting case of dark states
earlier, touching upon relevant consequences such as NDR
and hysteresis, we avoided particular examples. Recently, we
applied our dark state model [14] to explain the NDR observed
due to subtle spin correlation effects in double quantum
dots [38]. Indeed this NDR results in the spin blockade
regime [38] which currently forms a key concept in the area
of single-spin manipulation and control [5, 15–18].

Finally, the transient probing with a high resolution probe
would allow us to explore the approach to resonance with the
trap states. As we discuss in [23], the stochastic blocking and
unblocking of the channel by the occupation/deoccupation of
the traps near resonance generates a flicker in the output current
known as random telegraph noise. The ratio of capture and
emission times is given by a Boltzmann factor whose argument
depends on the trap energy location. Shifting this trap with a
combination of gate and drain voltages leads to an associated
scaling of the capture to emission time ratio, allowing one
to infer the spatial and spectral location of the trap states.
This provides a powerful ‘barcode’ for characterizing single-
molecular defects.

Our analyses over the last few sections focused on
electron–electron correlations and their treatment in a Fock
space approach that captures the relevant physics (if at the
expense of computational simplicity). In the next section, we
will discuss how this approach can be extended to incorporate
electron–phonon correlations in transport.

4. Electron–phonon interactions

So far, our primary concern was Coulomb blockade and
electronic excitations. Here, we show that coupling Coulomb
blockade with phonon-assisted tunneling results in non-trivial
physics. This section is primarily motivated by a recent series
of experiments performed on suspended carbon nanotube
quantum dots [24]. In such a suspended system, the phonons
are driven far out of equilibrium and couple strongly with
the electronic system. Our approach then is to invoke the
Fock space of the electron–phonon system as indicated in
figures 1(c) and (d).

4.1. SCF treatment—IETS and phonon sidebands

The SCF approach to electron–electron interactions has been
discussed at length in our earlier papers and contrasted with
the Fock space approach. It is worth quickly touching upon the
SCF treatment of phonons, before diving into its Fock space
analog. In presence of dephasing scattering events, the current
at the left contact can be written in the NEGF formalism [42]
as

IL = 2e

h

∫

dE Tr[�in
L A − 
LGn] (15)

where A is the spectral function, 
L is the broadening by
the left contact, �in

L is the in-scattering self-energy from the
left contact and Gn is the correlation function describing the
energy dependent occupancy of the levels, taking quantum
interference into account. The influence of scattering by
contacts and phonons resides in �in = �in

L + �in
R + �in

ph. The
equations for the contact �s are well known—we will focus
here on the additional contributions from the phonon scattering
processes. Within the self-consistent Born approximation
(self-consistency needed to conserve current), the equations
connecting the phonon contributions form two groups—a set
of dynamic equations, and a set of static equations. The non-
equilibrium dynamics describing the filling and emptying of
states is described by

Gn,p(E) = G(E)�
in,out
ph (E)G†(E)

�
in,out
ph (E) = D0(ω) ⊗ [

nB(ω)Gn,p(E ∓ h̄ω)

+ (nB(ω) + 1) Gn,p(E ± h̄ω)
]

(16)

where nB(ω) = [eh̄ω/kB T − 1]−1 is the equilibrium Bose–
Einstein distribution of the phonons, and D0 is its deformation
potential, in other words, (D0)i j = hi h j , hα being the
electron–phonon coupling constant at the real space point α (in
general, h is a non-diagonal matrix in an arbitrary basis set, and
D0 is a fourth-rank tensor). ⊗ denotes an element-by-element
(as opposed to matrix) multiplication. The equations above
are for a single phonon mode at frequency ω, and will need to
be integrated over a phonon density of states for a continuous
distribution of phonons.

The static equations describing the states themselves are
given by


ph(E) = �in
ph(E) + �out

ph (E)

�ph(E) = H(�ph) + i

ph

2

G(E) = [E I − H − �L − �R − �ph]−1,

(17)

where H denotes the Hilbert transform.
The above equations capture the physics of phonon-

assisted tunneling in all its various limits. In its simplest
form, it contributes to dephasing that reduces the ballistic
current in devices. Near resonance, the ±h̄ω terms in the
arguments of the Gn,p matrices contributing to �in,out(E)

generate phonon sidebands. The scaling of these sidebands
depends on the deformation potential as well as the distribution
of the phonons. We have assumed this to be equilibrium Bose–
Einstein nB, although one could generalize it provided we
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have a separate evolution equation for the phonon dynamics
coupled to the electron transport equations that describe
parametrically or otherwise how the phonons are driven
away from equilibrium by the electronic subsystem, and how
the other terms in the phonon evolution equation (typically
involving coupling with a thermal reservoir) try to bring
this back to equilibrium. In the next section, we will, in
fact, include these ‘hot’ phonon equations explicitly; instead
of separate coupled equations, however, we will treat the
electron–phonon as a composite system, and use the couplings
between the electrons, phonons, and with the contacts and
the bath as processes driving the evolution of the composite
system.

The NEGF formalism also allows us to get away from this
phonon-assisted tunneling limit to the off-resonant limit. When
the electronic levels lie far from resonance, their sidebands
do not show up and we get instead the inelastic electronic
tunneling spectrum (IETS) of the molecular system. For
weak electron–phonon coupling (retaining leading order terms
in D0), the NEGF algebra simplifies considerably, so that
the current partitions into an elastic component given by the
usual Landauer formula, as well as an inelastic component
that explicitly involves exclusion principle terms at different
emission and absorption energies. For applied voltages larger
than the phonon frequency, these terms create additional
current transport channels through phonon emission, creating
a slight increase in the current that only shows up as peaks
in the second derivative with voltage, generating the familiar
IETS spectrum. The physics resides entirely in the inelastic
current—one can use sophisticated electron structure methods
to extract these peak positions from the phonon frequencies, as
well as the IETS peak heights from the computed deformation
potentials. The results also show additional subtleties near
resonance that are experimentally observed. Specifically,
near resonance the elastic current also picks up phonon
signatures from the phonon contributions to � residing in G,
generating a dip rather than a peak that arises from the phonon
sidebands described above (the equations also generate a
familiar polaronic shift of the main peak). The inclusion of the
equilibrium nB distribution gives phonon emission peaks that
are stronger in strength than absorption peaks by Boltzmann
ratios evaluated at the electronic temperature.

While encouraging agreement between computed and
experimental off-resonant behavior, specifically, IETS spectra,
has been reported [43], the resonant phonon sidebands and
the scaling of their conductance peak heights with current
shows significantly more complex behavior arising from
strong non-equilibrium electron–phonon correlations, which
necessitates a Fock space approach. We will now introduce
the joint electron–phonon Fock space and the experimental
ramifications of electron–phonon correlation effects captured
with this treatment.

4.2. Fock space treatment of phonon sidebands

We start from a model Hamiltonian for a quantum dot having
onsite energies εi , Coulomb interaction energy Uii ′ , vibronic
modes at energy h̄ω j and electron–phonon coupling λi j . The

Figure 8. Fock space model to include electron–phonon interactions.
(a) The dot is electrically connected to the left (right) contact (with
electron tunneling rates 
L,R/h̄) and mechanically to the phonon bath
(with a phonon escape rate of β/h̄). The dot has electronic degrees of
freedom εi and phonon degrees of freedom h̄ω j (i, j = 1, 2, 3, . . .)
with coupling λi j . (b) Transition between different states of a dot,
having one electronic level and one phonon mode, due to coupling to
the contact and the phonon bath (|0, N〉 and |1, N〉 denote the states
of the system having N phonons each but zero electrons and one
electron respectively). (c) Effective Coulomb blockaded channel in
the absence of phonons. (d) Inclusion of electron–phonon coupling
adds phonon sidebands to the existing transport channels.

system is connected to electrical contacts with couplings 
1,2

and to a thermal bath with coupling β (figure 8(a)). Electronic
transport due to bias applied to the contacts as well as phonon
emission and absorption processes lead to transitions between
many-body states |ei

Ne
, k〉 (k phonons and i th electronic level

in the Ne electronic subspace) of the quantum dot (figure 8(b)).
The rates of these transitions due to left (right) contact
(RL (R)

|er
Ne−1,k〉→|es

Ne
,p〉) and the phonon bath (Rph

|er
Ne−1,k〉→|es

Ne
,p〉) are

calculated by applying Fermi’s Golden Rule [25]. When an
electron is added or removed via standard transport processes,
it can also change the number of phonons, taking the dot from
a state |0, N〉 to |1, N ± p〉 or vice versa, where p is the
number of phonons emitted or absorbed. When the quantum
dot absorbs or emits a phonon, the state changes from |X, N〉
to |X, N ± 1〉, where X = 0 or 1. The consequence of
phonons in transport is the addition of extra transport channels
to the already existing Coulomb blockade transport channels,
as shown in figures 8(c) and (d).

The rate equations in the above Fock space (8) can be
solved for a finite number of phonon emission or absorption
channels to extract the resulting current–voltage characteristic.
Focusing on the intriguing experiments on Coulomb blockaded
nanotube quantum dots with prominent breathing modes [24],
one sees multiple intriguing features. (a) The absorption and
emission sideband heights do not scale as simply as above.
This is because the number of phonons Nph itself changes
with current, in addition to being driven far from equilibrium
in the suspended sections of the tube with small escape rate
β . (b) The scaling of sidebands with phonon population
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Figure 9. The phonon distribution PphB
k from the Boltzmann distribution (a) (solid line) with the effective temperature T ∗ differs considerably

from the phonon distribution Pph
k calculated directly from the rate equation (circles). (b) The phonon distribution Pph

k approaches the
Boltzmann distribution PphB

k (with proper effective temperature T ∗ not shown here) at elevated surrounding temperature T .

differs significantly from predictions of the analogous Tien–
Gordon theory of photon-assisted tunneling (PAT) [44]. This
discrepancy arises because unlike in the PAT experiments, the
phonons are not coherent, and are partly correlated with the
nanotube electrons [25].

4.3. Non-equilibrium phonons and effective temperature

A crucial component of the above picture is the strongly non-
equilibrium distribution for the phonon population, as their
rate of generation by the drive current (determined by 
L,R

and λ) exceeds their extraction rate β . From the solution to the
rate equations giving us the joint electron–phonon occupation
probabilities, we can calculate the probability distribution
of the phonon by summing over the electronic subspaces:
Pph

k = ∑
s,Ne

P|es
Ne

,k〉. Defining an effective temperature
T ∗ corresponding to the non-equilibrium phonon occupation
Nph = [eh̄ω/kB T ∗ − 1]−1, we find the corresponding Boltzmann

distribution: PphB
k = e−kh̄ω/kB T ∗

/Z of phonon subspace
occupation probability, where Z is the partition function (T ∗
is identified by fitting the higher energy tails between the
two distributions). A comparison between Pph

k and PphB
k at

different biases for different decay rates of the phonons reveals
that they differ considerably as the phonon decay rate β/h̄
decreases (figure 9(a)) at some applied bias. The deviation
from a Bose–Einstein like shape suggests that the phonons in
the suspended nanotubes are strongly non-equilibrium, so that
temperature is not a well-defined quantity except for describing
the higher energy tails (figure 9(b)).

4.4. Effect of the surrounding temperature: anomalous
phonon population

The non-equilibrium phonon population reveals a striking and
somewhat counter-intuitive dependence on the substrate tem-
perature, the phonon population decreasing with increasing

temperature at certain bias voltages (figure 10(a)). This
peculiar behavior manifests itself as long as the surrounding
temperature is smaller than the separation between the upper
emission and lower absorption sidebands of two subsequent
Coulomb blockade peaks. Beyond this temperature the phonon
occupancy increases monotonically with temperature for all
bias values, as expected. The anomalous temperature depen-
dence arises from a trade-off between phonon generation and
recombination rates in the coupled dot–lead–bath system. The
behavior is observed specifically at bias values corresponding
to the onset of a new phonon absorption channel (figure 10(b),
bottom left). With increasing temperature from ∼5 to 20 K, the
increasing tails of the contact Fermi functions redistribute the
electrons from a phonon emission sideband ε1 + h̄ω of a lower
electronic peak to an absorption sideband ε2 − h̄ω of a higher
peak (figure 10(b), bottom right). Under this specific combi-
nation of temperature and bias values, the number of electrons
resonant with the phonon sidebands decreases with increasing
temperature, decreasing the efficiency of the phonon-assisted
transport. At higher temperatures between 20 and 50 K,
the temperature is large enough to open new emission chan-
nels that eventually increase the phonon population at all bias
voltages.

5. Concluding remarks

For a wide variety of transport problems, a perturbative
treatment of interactions coupled with a quantum kinetic
theory (such as NEGF) does an admirable job of explaining
and predicting experimental features and providing important
physical insights. As objects scale towards nanodimensions,
however, strong confinement and poor coupling with the
surroundings lead to increasing degrees of correlation,
especially at lower temperatures. In this limit, the Fock
space approach (more generally, the many-body density matrix
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(a)

(b)

Figure 10. Anomalous temperature dependence of phonon
distribution. (a) The number of phonons decreases at some bias
points with increasing surrounding temperature T . (b) Bottom left: at
lower surrounding temperature excitation of energy ε1 + h̄ω
associated with resonant level ε1 falls inside the bias window
between μL + kBTL and μR − kBTR and the excitation of energy
ε2 − h̄ω associated with resonant level ε2 falls outside the bias
window. Bottom right: at elevated surrounding temperature Fermi
functions of the contacts broaden around respective chemical
potentials and the excitation of energy ε2 − h̄ω enters the bias
window, and a lesser number of electrons appear at energy ε1 + h̄ω
in the left contact.

approach) naturally allows us to compute transport signatures,
provided we have a suitable means of extracting the various
correlated many-body states and the rates of transition among
them. Exact diagonalization provides one option, although
this quickly becomes computationally intractable. Partial
configuration interaction (CI) schemes may prove to be more
practical. In contrast with the NEGF-SCF limit case where
one could aim for quantitative and predictive accuracy with
increasing amounts of chemical sophistication, such details
are hard to build into the Fock space approach and need
to be replaced by simpler, model problems, with parameters
that could be benchmarked with more detailed models and
measurements. However, even these simple models (with
a reasonable choice of parameters) show qualitatively new
physics that is experimentally observable, ranging from gate-
modulated current levels, gate tunable excitation spectra,
scan rate dependent NDR and hysteresis, and the breakdown
of our common intuition based on equilibrium phonon
sideband scaling and the classical theories of photon-assisted
tunneling. While these two limits (quantum wire and
quantum dot) are separately well understood, at least formally,
the intermediate coupling regime between the two becomes
particularly challenging to model as there is no small ‘fine

structure’ parameter that would allow a convenient starting
point for a perturbation expansion (e.g. a non-interacting wire
or a fully interacting but isolated quantum dot). Significant
progress is needed at formal, computational and experimental
levels in order to probe this regime, which bears the promise
of completely novel physics of non-equilibrium correlations as
well as possible applications based on the interaction between
conducting detector elements in the quantum wire regime and
non-conducting storage elements in the quantum dot regime.
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